Verifiable Inner Product Encryption Scheme

Najmeh Soroush, Vincenzo lovino, Alfredo Rial, Peter Roenne, Peter Y.A. Ryan

> PKC 2020 - Virtual version June 2020

IIIIIIIII
UNIVERSITÉ DU

Functional Encryption "FE"

Verifiability concept for FE

Inner Product Encryption as FE

Perfectly correct IPE

Verifiable Inner Product Encryption
Some applications of IPE/VIPE

Encryption Scheme

Functional Encryption Scheme

Functional Encryption for functionality $\mathcal{F}=\{\mathrm{f}\}$:

Verifiability for $\mathrm{FE}_{\text {[BGus16] }}$:

Verifiability vs Security

Inner Product Encryption as FE:

$$
\begin{aligned}
& \mathcal{F}=\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{Z}^{+}}, \mathcal{F}_{n}=\left\{f_{\vec{v}}\right\}_{\vec{v} \in \Sigma_{n}} \\
& \qquad f_{\vec{v}}: \Sigma_{n} \times \mathcal{M} \rightarrow \mathcal{M} \cup\{\perp\} \\
& \\
& f_{\vec{v}}(\vec{x}, m)= \begin{cases}m & \text { If }\langle\vec{x}, \vec{v}\rangle=0 \\
\perp & \text { If }\langle\vec{x}, \vec{v}\rangle \neq 0\end{cases} \\
& \vec{v} \in \Sigma_{n}:
\end{aligned}
$$

- n : A positive integer, (vector length)
- Σ_{n} : A set of vectors of length n defined over some field $\left(\mathbb{Z}_{p}\right)$
- \mathcal{M} : A message space

Inner Product Encryption:

$I P=\langle$ SetUp, TokGen, Enc, Dec,

$$
\left[\begin{array}{l}
\bullet \operatorname{SetUp}\left(1^{\lambda}, n\right) \longrightarrow(M P K, M S K) \\
\text { - TokGen }(M P K, M S K, \vec{v}) \longrightarrow \text { Tok }_{\vec{v}} \\
\text { - Enc }(M P K, \vec{x}, m) \longrightarrow \text { CT } \\
\text { - } \operatorname{Dec}\left(M P K, \text { Tok }_{\vec{v}}, \mathrm{CT}\right) \longrightarrow m \in \mathcal{M} \cup\{\perp\}
\end{array}\right.
$$

Correctness

$$
\operatorname{Pr}\left[\begin{array}{ll}
\operatorname{Dec}\left(\operatorname{Tok}_{\vec{v}}, \mathrm{CT}\right)=f_{\vec{v}}(\vec{x}, m) \mid & (\mathrm{MPK}, \mathrm{MSK}) \leftarrow \operatorname{SetUp}\left(1^{\lambda}, n\right), \\
& \operatorname{Tok}_{\vec{v}} \leftarrow \operatorname{TokGen}(\mathrm{MSK}, \vec{v}), \\
& \mathrm{CT} \leftarrow \operatorname{Enc}(\mathrm{MPK}, \vec{x}, m)
\end{array}\right] \approx 1
$$

Verifiable Inner Product Encryption:

$I P=\langle$ SetUp, TokGen, Enc, Dec,

$$
\begin{aligned}
& \text { - } \operatorname{SetUp}\left(1^{\lambda}, n\right) \longrightarrow(\text { MPK, MSK }) \\
& \text { - } \operatorname{TokGen}(M P K, \text { MSK }, \vec{v}) \longrightarrow \text { Tok }_{\vec{v}} \\
& \text { - Enc(MPK, } \vec{x}, m) \longrightarrow \text { CT } \\
& \text { - } \operatorname{Dec}\left(\text { MPK, } \text { Tok }_{\vec{v}}, \mathrm{CT}\right) \longrightarrow m \in \mathcal{M} \cup\{\perp\}
\end{aligned}
$$

```
\forallMPK }\in{0,1\mp@subsup{}}{}{*},\forallCT\in{0,1\mp@subsup{}}{}{*}
\existsn>0,(\vec{x},m)\in\mp@subsup{\Sigma}{n}{}\times\mathcal{M}:
\forall}\in\mp@subsup{\Sigma}{n}{},\mp@subsup{\mathrm{ Tok}}{\vec{v}}{}\in{0,1\mp@subsup{}}{}{*}
1.VrfyMPK(MPK) = 1
2.VrfyCT(MPK,CT)=1
3.VrfyTok(MPK, \vec{v},\mp@subsup{\mathrm{ Tok}}{\vec{v}}{})=1
    \Downarrow
Pr}[\operatorname{Dec}(MPK,\vec{v},\mp@subsup{\operatorname{Tok}}{\vec{v}}{},\textrm{CT})=\mp@subsup{f}{\vec{v}}{}(m)]=
```


First challenge : Perfectly correct IPE

Randomness from Encryption algorithm

$$
\begin{aligned}
& \operatorname{Enc}(\mathrm{MPK}, \vec{x}, m) \rightarrow \mathrm{CT} \\
& \left.\operatorname{Dec}\left(\operatorname{Tok}_{\vec{v}}, \mathrm{CT}\right) \rightarrow m^{*}=m \cdot \mathbf{e}(g, h){\left.\underline{\left(\lambda_{1}\right.} s_{3}+\lambda_{2} s_{4}\right)}^{\operatorname{Dr}} \overrightarrow{\mathrm{x}}, \vec{v}\right\rangle \\
& \text { Randomness from TokGen algorithm }
\end{aligned}
$$

First challenge : Perfectly correct IPE

First attemp:

$$
\begin{gathered}
\mathrm{CT}=\left(\mathrm{ct}, \mathrm{ct}^{\prime}\right): \begin{array}{l}
\mathrm{ct}=\operatorname{Enc}\left(m, \mathrm{MPK} ;\left\{s_{i}\right\}\right) \\
\mathrm{ct}^{\prime}=\operatorname{Enc}\left(m, \mathrm{MPK} ;\left\{s_{i}^{\prime}\right\}\right)
\end{array} \\
m_{1}=\operatorname{Dec}(\mathrm{ct})=m \cdot e(h, g)^{\left(\lambda_{1} s_{3}+s_{4} \lambda_{2}\right)\langle\vec{x}, \vec{v}\rangle} \\
m_{2}=\operatorname{Dec}\left(\mathrm{ct}^{\prime}\right)=m \cdot e(h, g)^{\left(\lambda_{1}^{\prime} s_{3}^{\prime}+s_{4}^{\prime} \lambda_{2}\right)\langle\vec{x}, \vec{v}\rangle}
\end{gathered}
$$

Decryption algorithm

$$
\begin{array}{ll}
m_{1}=m_{2}: & \text { Output } m_{1} \\
m_{1} \neq m_{2}: & \text { Output } \perp
\end{array}
$$

$$
\begin{gathered}
\left(\lambda_{1} s_{3}+\lambda_{2} s_{4}\right)=\left(\lambda_{1} s_{3}^{\prime}+\lambda_{2} s_{4}^{\prime}\right) \\
\Downarrow \\
m_{1}=m_{2}
\end{gathered}
$$

Our Solution:

$$
\left.\begin{array}{rl}
\mathrm{CT}=\left(\mathrm{ct}, \mathrm{ct}^{\prime}\right): \begin{array}{l}
\mathrm{ct} \\
\mathrm{ct}
\end{array}=\operatorname{Enc}\left(m, \mathrm{MPK} ;\left\{s_{i}\right\}\right) \\
& \\
& m_{1}=\operatorname{Dec}(m, \mathrm{ct})=m \cdot e(h, g)^{\left(\lambda_{1} s_{3}+s_{4} \lambda_{2}\right)\langle\vec{x}, \vec{v}\rangle} \\
& \left.m_{2}=\operatorname{Dec}\left(s_{i}^{\prime}\right\}\right)
\end{array} s_{4}^{\prime}, s_{3} \neq s_{3}^{\prime}\right)=m \cdot e(h, g)^{\left(\lambda_{1} s_{3}^{\prime}+s_{4} \lambda_{2}\right)\langle\vec{x}, \vec{v}\rangle} .
$$

Decryption algorithm

$$
\begin{array}{ll}
m_{1}=m_{2}: & \text { Output } m_{1} \\
m_{1} \neq m_{2}: & \text { Output } \perp
\end{array}
$$

$$
\begin{gathered}
\left(\lambda_{1} s_{3}+\lambda_{2} s_{4}\right) \\
\neq\left(\lambda_{1} s_{3}^{\prime}+\lambda_{2} s_{4}\right) \\
\Downarrow \\
m_{1}=m_{2} \Leftrightarrow\langle\vec{x}, \vec{v}\rangle=0
\end{gathered}
$$

Perfectly correct Inner Product Encryption

Verifiable Inner Product Encryption

Perfectly binding commitment scheme

NIWI proofs: π
[BGJS16]

Verifiable Inner Product Encryption

Perfectly binding commitment scheme

NIWI proofs: π
$\mathrm{CT}_{1}, \mathrm{CT}_{2}, \mathrm{CT}_{3}, \mathrm{CT}_{4}$:

$$
\exists m: \forall i \in[4]: \mathrm{CT}_{i}=\operatorname{Enc}\left(\mathrm{MPK}_{i}, m ; \text { random }_{i}\right)
$$

OR :
$\exists i, j \in[4], \exists m:$
$\mathrm{CT}_{i}=\operatorname{Enc}\left(\mathrm{MPK}_{i}, m ;\right.$ random $\left._{i}\right), \mathrm{CT}_{j}=\operatorname{Enc}\left(\mathrm{MPK}_{j}, m ;\right.$ random $\left._{j}\right)$ AND :
$z_{0}=\operatorname{Com}\left(\left\{c_{i}\right\}_{i \in[4]} ; r_{0}^{\text {com }}\right) \wedge z_{1}=\operatorname{Com}\left(0 ; r_{1}^{\text {com }}\right)$

$\mathrm{CT}_{1}, \mathrm{CT}_{2}, \mathrm{CT}_{3}, \mathrm{CT}_{4}$

$\exists m: \forall i \in[4]: \mathrm{CT}_{i}=\mathrm{Enc}\left(\mathrm{MPK}_{i}, m ;\right.$ random $\left._{i}\right)$
OR :
$\exists i, j \in[4], \exists m$
$\mathrm{CT}_{i}=\operatorname{Enc}\left(\mathrm{MPK}_{i}, m ;\right.$ random $\left._{i}\right), \mathrm{CT}_{j}=\operatorname{Enc}\left(\mathrm{MPK}_{j}, m ;\right.$ random $\left.{ }_{j}\right)$
AND
$z_{0}=\operatorname{Com}\left(\left\{c_{i}\right\}_{i \in[4]} ; r_{0}^{\text {com }}\right) \wedge z_{1}=\operatorname{Com}\left(0 ; r_{1}^{\text {rom }}\right)$

1-Relations:

- $R_{s, \mathrm{Ct}}^{k, \mathrm{ct}}(\overbrace{\left(\left(\mathrm{ct}_{1}, \mathrm{mpk}_{1}\right), \ldots,\left(\mathrm{ct}_{k}, \mathrm{mpk}_{k}\right)\right)}, \overbrace{\left(\vec{x}, m, \mathrm{r}_{1}^{\mathrm{enc}}, \ldots, \mathrm{r}_{k}^{\mathrm{enc}}\right)})=$

TRUE, $k \in[4] \Longleftrightarrow \forall i \in[k] \mathrm{ct}_{i}=\operatorname{IP} . E n c\left(\mathrm{mpk}_{i}, \vec{x}, m ; \mathrm{r}_{i}^{\text {enc }}\right)$

- R $^{\text {enc }}(x, w)=$ TRUE $\Longleftrightarrow \mathrm{P}_{1}^{\text {enc }}(x, w) \vee \mathrm{P}_{2}^{\text {enc }}(x, w)$, with
$P_{1}^{\mathrm{enc}}\left(\left(\left\{c_{i}\right\}_{i \in[4]},\left\{a_{i}\right\}_{i \in[4]}, z_{0}, z_{1}\right),\left(m, \vec{x},\left\{\mathrm{r}_{i}^{\mathrm{enc}}\right\}_{i \in[4]}, i_{1}, i_{2}, \mathrm{r}_{0}^{\text {com }}, \mathrm{r}_{1}^{\text {com }}\right)\right)=$
TRUE $\Longleftrightarrow\left(\left(\left(c_{1}, a_{1}\right), \ldots,\left(c_{4}, a_{4}\right)\right),\left(\vec{x}, m,\left\{r_{i}^{\text {enc }}\right\}\right)\right) \in \operatorname{R}_{3}^{4, \mathrm{ct}}$
$\mathrm{P}_{2}^{\mathrm{enc}}\left(\left(\left\{c_{i}\right\}_{i \in[4]},\left\{a_{i}\right\}_{i \in[4]}, z_{0}, z_{1}\right),\left(m, \vec{x},\left\{\mathrm{r}_{i}^{\text {enc }}\right\}_{i \in[4]}, i_{1}, i_{2}, \mathrm{r}_{0}^{\text {com }}, \mathrm{r}_{1}^{\text {com }}\right)\right)=$
TRUE \Longleftrightarrow
$\binom{i_{1}, i_{2} \in[4] \wedge\left(i_{1} \neq i_{2}\right) \wedge\left(\left(\left(c_{i_{1}}, a_{i_{1}}\right),\left(c_{i_{2}}, a_{i_{2}}\right)\right),\left(\vec{x}, m, r_{i}^{\text {enc }}\right)\right) \in \mathrm{R}_{\vec{P}}^{2, \mathrm{ct}}}{\wedge z_{0}=\operatorname{Com}\left(\left\{c_{i}\right\}_{i \in[4]} ; r_{0}^{\text {com }}\right) \wedge z_{1}=\operatorname{Com}\left(0 ; r_{1}^{\text {com }}\right)}$

Encryption Algorithm:

IP.Enc(MPK, $\vec{x}, m) \longrightarrow \mathrm{CT}=\left(\mathrm{ct}, \mathrm{ct}^{\prime}\right):$

- $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{p}^{n}$ and a message $m \in \mathbb{G}_{T}$
- Random elements: $s_{1}, \ldots s_{4}, s_{1}^{\prime}, \ldots, s_{3}^{\prime} \leftarrow \mathbb{Z}_{p}^{*}$ such that $s_{3} \neq s_{3}^{\prime}$
- $\mathrm{ct}_{1}=g^{s_{2}}, \mathrm{ct}_{2}=h^{s_{1}}$
$\left\{\begin{array}{lll}\mathrm{ct}_{3, i}=W_{1, i}^{s_{1}} \cdot F_{1, i}^{s_{2}} \cdot U_{1}^{x_{i} s_{3}} & , & \mathrm{ct}_{4, i}=W_{2, i}^{s_{1}} \cdot F_{2, i}^{s_{2}} \cdot U_{2}^{x_{i} s_{3}} \\ \mathrm{ct}_{5, i}=T_{1, i}^{s_{1}} \cdot H_{1, i}^{s_{2}} \cdot V_{1}^{x_{i} s_{4}} & , & \mathrm{ct}_{6, i}=T_{2, i}^{s_{1}} \cdot H_{2, i}^{s_{2}} \cdot V_{2}^{x_{i} s_{4}}\end{array}\right\}_{i \in[n]}$,
- $\mathrm{ct}_{7}=\mathbf{e}\left(g^{s_{3}}, g^{s_{4}}\right), \mathrm{ct}_{8}=\Lambda^{-s_{2}} \cdot m$.

2- Variables

$$
\begin{aligned}
& \mathcal{S}_{1}=g^{s_{1}}, \mathcal{S}_{1}^{\prime}=g^{s_{1}^{\prime}} \\
& \mathcal{S}_{3}=g^{s_{3}}, \mathcal{S}_{3}^{\prime}=g^{s_{3}^{\prime}} \\
& \mathcal{S}_{4}=g^{s_{4}}, \mathcal{X}_{i}=g^{x_{i}} \\
& \mathcal{U}_{1}=U_{1}^{s_{3}}, \mathcal{U}_{2}=U_{2}^{s_{3}} \\
& \mathcal{V}_{1}=V_{1}^{s_{4}}, \mathcal{V}_{2}=V_{2}^{s_{4}} \\
& \mathcal{U}_{1}=U_{1}^{s_{3}^{\prime}}, \mathcal{U}_{2}=U_{2}^{s_{3}^{\prime}} \\
& \mathcal{K}_{1}=K_{1}^{s_{2}}, \mathcal{K}_{1}^{\prime}=K_{1}^{s_{2}^{\prime}}
\end{aligned}
$$

3- System of equations:

$$
\mathrm{E}_{\mathrm{ct}}:\left\{\begin{array}{l}
\mathbf{e}\left(\mathrm{ct}_{2}, g\right)=\mathbf{e}\left(h, \mathcal{S}_{1}\right), \mathbf{e}\left(\mathrm{ct}_{2}^{\prime}, g\right)=\mathbf{e}\left(h, \mathcal{S}_{1}^{\prime}\right), \mathbf{e}\left(\hat{c t_{2}}, \hat{g}\right)=\mathbf{e}\left(\hat{h}, \hat{\mathcal{S}}_{1}\right), \mathbf{e}\left(\hat{c t}_{2}^{\prime}, \hat{g}\right)=\mathbf{e}\left(\hat{h}, \hat{\mathcal{S}}_{1}^{\prime}\right) \\
\mathbf{e}\left(\mathrm{ct}_{3, i}, g\right) \cdot \mathbf{e}\left(F_{1, i}, \mathrm{ct}_{1}\right)^{-1}=\mathbf{e}\left(W_{1, i}, \mathcal{S}_{1}\right) \cdot \mathbf{e}\left(\mathcal{U}_{1}, \mathcal{X}_{i}\right) \\
\mathbf{e}\left(\mathrm{ct}_{3, i}^{\prime}, g\right) \cdot \mathbf{e}\left(F_{1, i}, \mathrm{ct}_{1}^{\prime}\right)^{-1}=\mathbf{e}\left(W_{1, i}, \mathcal{S}_{1}^{\prime}\right) \cdot \mathbf{e}\left(\mathcal{U}_{1}^{\prime}, \mathcal{X}_{i}\right) \\
\mathbf{e}\left(\mathrm{ct}_{4, i}, g\right) \cdot \mathbf{e}\left(F_{2, i}, \mathrm{ct}_{1}\right)^{-1}=\mathbf{e}\left(W_{2, i}, \mathcal{S}_{1}\right) \cdot \mathbf{e}\left(\mathcal{U}_{2}, \mathcal{X}_{i}\right) \\
\mathbf{e}\left(\mathrm{ct}_{4, i}^{\prime}, g\right) \cdot \mathbf{e}\left(F_{2, i}, \mathrm{ct}_{1}^{\prime}\right)^{-1}=\mathbf{e}\left(W_{2, i}, \mathcal{S}_{1}^{\prime}\right) \cdot \mathbf{e}\left(\mathcal{U}_{2}^{\prime}, \mathcal{X}_{i}\right) \\
\mathbf{e}\left(c t_{5, i}, g\right) \cdot \mathbf{e}\left(H_{1, i}, \mathrm{ct}_{2}\right)^{-1}=\mathbf{e}\left(T_{1, i}, \mathcal{S}_{1}\right) \cdot \mathbf{e}\left(\mathcal{V}_{1}, \mathcal{X}_{i}\right) \\
\mathbf{e}\left(\mathrm{ct}_{5, i}^{\prime}, g\right) \cdot \mathbf{e}\left(H_{1, i}, \mathrm{ct}_{2}^{\prime}\right)^{-1}=\mathbf{e}\left(T_{1, i}, \mathcal{S}_{1}^{\prime}\right) \cdot \mathbf{e}\left(\mathcal{V}_{1}^{\prime}, \mathcal{X}_{i}\right) \\
\mathbf{e}\left(\mathrm{ct}_{6, i}, g\right) \cdot \mathbf{e}\left(H_{2, i}, \mathrm{ct}_{2}\right)^{-1}=\mathbf{e}\left(T_{2, i}, \mathcal{S}_{1}\right) \cdot \mathbf{e}\left(\mathcal{V}_{2}, \mathcal{X}_{i}\right) \\
\mathbf{e}\left(\mathrm{ct}_{6, i}^{\prime}, g\right) \cdot \mathbf{e}\left(H_{2, i}, \mathrm{ct}_{2}^{\prime}\right)^{-1}=\mathbf{e}\left(T_{2, i}, \mathcal{S}_{1}^{\prime}\right) \cdot \mathbf{e}\left(\mathcal{V}_{2}^{\prime}, \mathcal{X}_{i}\right) \\
\mathrm{ct}_{7}=\mathbf{e}\left(\mathcal{S}_{3}, \mathcal{S}_{4}\right), \mathrm{ct}_{7}^{\prime}=\mathbf{e}\left(\mathcal{S}_{3}^{\prime}, \mathcal{S}_{4}\right), \hat{c t}_{7}=\mathbf{e}\left(\hat{\mathcal{S}}_{3}, \hat{\mathcal{S}}_{4}\right), \hat{c t}_{7}^{\prime}=\mathbf{e}\left(\hat{\mathcal{S}}_{3}^{\prime}, \hat{\mathcal{S}}_{4}\right) \\
\mathrm{ct}_{8}^{-1} \cdot \mathrm{ct}_{8}^{\prime}=\mathbf{e}\left(K_{1}, \mathcal{K}_{2}\right) \cdot \mathbf{e}\left(K_{1}^{-1}, \mathcal{K}_{1}^{\prime}\right), \hat{\mathrm{ct}}{ }_{8}^{-1} \cdot \hat{c t}_{8}^{\prime}=\mathbf{e}\left(\hat{K}_{1}, \hat{\mathcal{K}}_{2}\right) \cdot \mathbf{e}\left(\hat{K}_{1}^{-1}, \hat{\mathcal{K}}_{1}^{\prime}\right) \\
\mathbf{e}\left(\mathrm{ct}_{1}, K_{1}\right)=\mathbf{e}\left(g, \mathcal{K}_{1}\right), \mathbf{e}\left(\mathrm{ct}_{1}^{\prime}, K_{1}\right)=\mathbf{e}\left(g, \mathcal{K}_{1}^{\prime}\right)
\end{array}\right.
$$

Groth-Sahai NIWI proof system:

NIWI proofs: π

Some applications of VIPEIIPE:

Anonymous Identity-Based Encryption [Kswo8]

Predicate encryption schemes supporting polynomial evaluation

Hidden-Vector Encryption

Polynomial commitment scheme

Verifiable Polynomial commitment

Commitment Phase: Opening Phase:

$$
\begin{aligned}
& \operatorname{poly}(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x+a_{0} \in \mathbb{Z}_{p}[X] \\
& \vec{x}:=\left(a_{d}, a_{d-1}, \ldots, a_{1}, a_{0}, 1\right) \in \mathbb{Z}_{p}^{d+2}
\end{aligned}
$$

$$
\begin{aligned}
& (m, y), \quad \operatorname{poly}(m)=y \\
& \vec{v}=\left(m^{d}, m^{d-1}, \ldots, m, 1,-y\right)
\end{aligned}
$$

$$
\text { VIP.SetUp }\left(1^{\lambda}, d+2\right) \longrightarrow(\text { MPK, MSK })
$$

TokGen(MSK, $\vec{v}) \longrightarrow$ Tok $_{\vec{v}}$

$$
\text { VIP.Enc(MPK, } \vec{x}) \rightarrow \text { CT }
$$

$$
\text { com }:=(\mathrm{MPK}, \mathrm{CT})
$$

$$
\begin{aligned}
&\langle\vec{x}, \vec{v}\rangle=a_{d} m^{d}+\ldots+a_{1} m+a_{0}-y \\
&=\operatorname{poly}(m)-y \\
& \Rightarrow \text { VIP.Dec }\left(\mathrm{CT}, \text { Tok }_{\vec{v}}\right)=0 \text { iff } \operatorname{poly}(m)=y
\end{aligned}
$$

Reference:

[Par11]: Jong Hwan Park. Inner-product encryption under standard assumptions.Des. Codes Cryptography, 58(3):235-257, 2011.
[BGJS16]: Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai. Verfiable functional encryption. In Proceedings, Part II, of the 22Nd International Conference on Advances in Cryptology | ASIACRYPT 2016
[GS08]: Jens Groth and Amit Sahai. Ecient non-interactive proof systems for bilinear groups. In Nigel P. Smart, editor, Advances in Cryptology - EUROCRYPT 2008
[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for NIZK. In Cynthia Dwork, editor, Advances in Cryptology -CRYPTO 2006
[BSW11]: Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography Conference
[KSW08]: Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial equations, and inner products. In Nigel P.Smart, editor, Advances in Cryptology - EUROCRYPT 2008

Thanks for your attention!

